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Abstract

Using a luciferase reporter–based high-throughput chemical
library screen and topological data analysis, we identified N-
acridine-9-yl-N',N'-dimethylpropane-1,3-diamine (DAPA) as an
inhibitor of the inositol requiring kinase 1a (IRE1a)–X-box
binding protein-1 (XBP1) pathway of the unfolded protein
response. We designed a collection of analogues based on the
structure of DAPA to explore structure–activity relationships and
identified N9-(3-(dimethylamino)propyl)-N3,N3,N6,N6-tetra-
methylacridine-3,6,9-triamine (3,6-DMAD), with 3,6-dimethy-
lamino substitution on the chromophore, as a potent inhibitor.
3,6-DMAD inhibited both IRE1a oligomerization and in vitro

endoribonuclease (RNase) activity, whereas the other analogues
only blocked IRE1a oligomerization. Consistent with the inhi-
bition of IRE1a-mediated XBP1 splicing, which is critical for
multiple myeloma cell survival, these analogues were cytotoxic
to multiple myeloma cell lines. Furthermore, 3,6-DMAD inhib-
ited XBP1 splicing in vivo and the growth of multiple myeloma
tumor xenografts. Our study not only confirmed the utilization
of topological data analysis in drug discovery but also identified
a class of compounds with a unique mechanism of action as
potent IRE1a–XBP1 inhibitors in the treatment of multiple
myeloma. Mol Cancer Ther; 15(9); 2055–65. �2016 AACR.

Introduction
The endoplasmic reticulum (ER) is the central organelle where

newly synthesized proteins mature and are properly folded.
A variety of stresses, including glucose deprivation, hypoxia,
and chemotherapeutic treatment, cause accumulation of unfold-
ed or misfolded proteins inside the ER, resulting in ER stress. In
response to ER stress, the cell initiates the unfolded protein
response (UPR) to restore protein folding homeostasis. The UPR
actively reduces protein translation, increases expression of ER
chaperones and protein-folding enzymes, and clears misfolded
proteins for degradation (1).However, under prolonged ER stress,
the UPR paradoxically also induces cell death by apoptosis (2).

In mammalian cells, the UPR consists of three primary
signaling pathways, each of which includes an ER mem-
brane-bound sensor protein that activates a b-ZIP (Basic Leu-
cine Zipper domain) transcription factor. The three pathways
are (i) inositol requiring kinase 1a (IRE1a) and X-box binding
protein-1 (XBP1); (ii) protein kinase RNA-like ER kinase
(PERK) and activating transcription factor 4 (ATF4); and (iii)
activating transcription factor 6 (ATF6), which serves as both a
sensor and transcriptional factor (1). The IRE1a–XBP1 branch
is involved in lipid synthesis, ER-associated protein degrada-
tion (ERAD), protein folding, translocation to ER, and secretion
(1). At the molecular level, IRE1a is a type I transmembrane
protein consisting of a serine/threonine kinase domain and an
RNase domain. In the presence of ER stress, IRE1a dimerizes
and oligomerizes while stimulating trans-autophosphoryla-
tion, activating the RNase domain (3, 4). Activated IRE1a
RNase excises a 26-nucleotide intron from the human XBP1
mRNA and causes a translational frame shift, generating the
spliced and activated form of XBP1 (XBP1s; Fig. 1A; refs. 1, 5).
In addition to its XBP1 splicing activity, activated IRE1a also
preferentially degrades ER-associated mRNAs, a process known
as regulated IRE1-dependent decay (RIDD; refs. 6, 7).

Studies in animal models have revealed that the UPR is
implicated in various types of human cancer and targeting key
components of the UPR has emerged as a promising therapeu-
tic strategy (5). The IRE1a–XBP1 pathway plays an indispens-
able role in tumor growth, metastatic progression, and che-
moresistance (8, 9). Expression and activation of XBP1 has
been correlated with poor clinical outcome in breast cancer
(10, 11) and angiogenesis in pancreatic cancer (12). As a
mediator of survival, XBP1 has been extensively characterized
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in multiple myeloma, a plasma cell malignancy (13, 14). XBP1
is indispensable for plasma cell differentiation (15) and its
expression is elevated in human multiple myeloma cells (16).
XBP1 expression knockdown severely compromised RPMI
8226 multiple myeloma cell growth in vitro (17) and sensitized
mouse myeloma cells for stress-induced apoptosis (18). Con-
versely, Em-myc–driven XBP1s expression promoted multiple
myeloma pathogenesis in mice (14). Consistent with these
results, XBP1s expression is associated with poor multiple
myeloma patient survival (13, 19).

Several groups have identified small molecule inhibitors that
selectively block IRE1a–XBP1 activation (5, 20), including
those targeting the RNase domain [STF-083010 (21), salicylal-
dehydes (22), 4m8C (23), MKC-3946 (17), and toyocamycin
(24)] and directly interfering with ATP binding ("Compound
3"; ref. 25). Other members of the hydroxy–aryl–aldehydes
(HAA) class, to which 4m8C and MKC-3946 belong, were also
extensively tested (26, 27). Given the complexity of the UPR,
and the therapeutic potential of small molecule inhibitors
targeting this pathway, combining conventional drug screening
data with novel quantitative analysis may accelerate the drug
development process.

To this end, we applied topological data analysis (TDA) to
assist cell-based high-throughput screen (HTS). TDA is based
on a branch of mathematics characterizing the geometric prop-
erty of shapes with mathematical algorithms (28) and is a
topologic framework of many machine-learning algorithms
that quantify the shape of a large, but finite, number of data
points. TDA has significant advantages over traditional hierar-
chical clustering in analyzing complex drug screening data. In
contrast to hierarchical clustering that makes irreversible
sequential choices about similarity and begins to lose utility
when data grow in size, TDA maintains each data point indi-
vidually throughout the process and performs extremely well in
high-dimensional, large volume data and maintains its visual
representations (29). Describing the results of an HTS is a
multidimensional, complex signal challenge and TDA is par-
ticularly well suited to separate the signal from the background.
To date, TDA has been applied to data analysis in cancer
(29, 30), diabetes (31), neurological disorder (32), viral evo-
lution (33), and the immune system (34).

Using an HTS combined with TDA, we identified a cluster of
acridine analogues as specific inhibitors of the IRE1a–XBP1
axis that are cytotoxic to multiple myeloma cell lines. We also
revealed a previously unidentified mechanism of action (MOA)
for any existing inhibitor of IRE1a. Therefore, this study pro-
vides mechanistic insight of the biology of IRE1a activation
and demonstrates the potential for targeting this MOA for
therapeutic gain.

Materials and Methods
Compounds

For the chemical library screen, 113,500 compounds from the
ChemDiv, SPECS, and Chembridge libraries were screened at the
Stanford University High-Throughput Bioscience Center (HTBC;
ref. 21). The detailed specifications and criteria for compound
selection can be found at the HTBCwebsite (http://htbc.stanford.
edu/compounds.html). Individual screening compounds for the
confirmation assay were ordered from ChemDiv. Acridine deri-
vatives were synthesized or obtained from the compound library

at Auckland Cancer Society Research Centre at University of
Auckland. These compounds are further characterized in Supple-
mentary Material. Thapsigargin (Tg) was obtained from Sigma
Aldrich.

Cell culture
HT1080 and HEK293 cells overexpressing IRE1a-GFP were

maintained in DMEM. RPMI 8226 and MM1.R cells were main-
tained in RPMI1640medium. Allmedia were supplemented with
10% FCS and 1% penicillin–streptomycin and cells were cultured
at 37�C with 5% CO2. Cell lines were authenticated using short
tandem repeat analysis at ATCC and used within 6 months'
culturing. The cells were obtained in 2001 (HT1080), 2009
(RPMI8226 and MM1.R), and 2011 (HEK293).

Topological data analysis
Analysis was performed using Iris software (Ayasdi Inc.). The

description of the implementation of TDA in the software is
described in ref. 29.

Western blotting
Western blotting was performed according to standard proto-

cols. Antibodies used include: anti-XBP1s (1:1,000; BioLegend),
anti-XBP1 (1:1,000; Abcam), anti-IRE1a, anti-phospho-eIF2a,
anti-phospho-eIF2 (1:1,000; Cell Signaling Technology) and
anti-b-actin (1:1,000; Santa Cruz Biotechnology).

Cell viability assay
For cell viability assay, 2 � 104 cells per well were plated into

96-well plates and treatment started 0 to 12 hours after plating.
After 24 hours of treatment, XTT reagent (ATCC)was added to the
wells. Then cells were incubated for 2 hours and absorbance was
measured at both 475 and 660 nm using a BioTek Synergy H1
plate reader.

In vitro nuclease assay and kinetic analysis
In vitro nuclease assays were performed as described in

ref. 35. Reactions were performed in nuclease reaction buffer
(40 mmol/L HEPES 7.0, 10 mmol/L Mg(OAc)2, 50 mmol/L
KOAc, 5 mmol/L DTT) at 30�C for the indicated amount of
time, with 2 mmol/L ADP, 1 mmol/L recombinant human
IRE1a (hIRE1a), and labeled RNA at 0.15 nmol/L (10 fmol/
reaction). Upon incubation for 30 minutes, reactions were
stopped and RNA was extracted using phenol/chloroform,
ethanol precipitated, analyzed on a denaturing 6% urea acryl-
amide gel and visualized by autoradiography.

IRE1a oligomerization assay
IRE1a oligomerization assay was performed as described pre-

viously (36). Briefly, reactionswere set up using the samenuclease
reaction buffer, 2 mmol/L recombinant hIRE1a, 2 mmol/L ADP,
and 60 mmol/L of the indicated compound. All reactions were
performed in 20 mL with 10% DMSO to account for vehicle and
incubated for 15 minutes at 30�C to allow for oligomerization.
The optical density of the sample wasmeasured at 500 nmusing a
NanoDrop 2000 (Thermo Scientific).

IRE1a-GFP foci formation assay
To visualize IRE1a foci, HEK293 cells stably expressing doxy-

cycline-inducible hIRE1a-GFP (37) were grown on a cover slip
and IRE1a-GFPwas inducedwith10nmol/Ldoxycycline24hours
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before start of treatments. Cells were then pretreated with com-
pound for 1 hour before addition of 300 nmol/L Tg for an
additional 2 hours. For immunofluorescence, primary anti-GFP
antibody (1:1,000; Roche) and Alexa Fluor 568 secondary anti-
body (1:2,000; Life Technologies) were used.

Bioluminescent imaging
Luciferase activity was measured noninvasively using the IVIS

imaging system (PerkinElmer). Mice were injected intraperitone-
ally with 300 mg/kg luciferin (Biosynth) and anesthetized by 3%
isoflurane (Butler-Schein). Exposure time was set as 1 second for
ventral view. All images were analyzed using Living Image soft-
ware version 4.2 (PerkinElmer). In vivo bioluminescent signal was
quantified by taking the average photon count per second per
square centimeter.

Murine multiple myeloma xenograft model
A total of 5 � 106 RPMI 8226 cells were implanted subcuta-

neously into the flanks of 4 to 6 weeks' old NOD SCID mice
(Charles River Laboratories). Drug treatment started when the
sizes of the tumors reached approximately 150mm3. Four tumor-
bearing mice per group were treated with 10 mg/kg 3,6-DMAD
or vehicle (saline) intraperitoneally once every 2 days. Tumor
volume was measured as previously described (38).

Results
Identification of inhibitors of the IRE1a–XBP1 pathway
through high-throughput chemical library screen and TDA

To identify inhibitors of XBP1 activation, we conducted a
luciferase reporter-based high-throughput chemical library
screen. In this reporter construct, firefly luciferase is fused in frame
with the human XBP1s mRNA sequence, resulting in luciferase
expression only when XBP1 mRNA is spliced by activated IRE1a
into the XBP1s form. This construct, as well as a CMV promoter-
driven control construct to normalize for potential off-target
effects, were stably introduced into the HT1080 human fibrosar-
coma cell line (HT1080-XBP1-luc and HT1080-CMV-luc,
respectively; Fig. 1A; ref. 39). Using the HT1080-XBP1-luc cell
line, we performed the primary screen with 113,500 unique
chemical compounds at a single concentration of 10 mmol/L
(Fig. 1B). ER stress was induced by 300 nmol/L Tg, an ER Ca2þ

ATPase inhibitor, and luciferase activity was measured 24 hours
later (21). We then prioritized 990 compounds that displayed
>40 %inhibition (compared with vehicle control) without non-
specific toxicity or nonspecific inhibition of luciferase activity
for a secondary screen, in which all the compounds were assessed
at eight concentrations ranging from 0.156 to 20 mmol/L in
both types of reporter cell lines to determine dose-dependent
activity (Fig. 1B).

To evaluate the results in a comprehensive manner, inhibi-
tion values of all 990 compounds were visualized in a heatmap
generated by hierarchical clustering (Fig. 1C). The six subclus-
ters represent different types of compound effects, including
activation of XBP1-luc activity at higher doses (I), nondose-
dependent inhibition (II), dose-dependent inhibition (III and
V), and toxicity at higher doses (IV and VI). To evaluate more
robustly the relationships between compounds and increase
the accuracy of the hit selection, we analyzed the results of
the secondary screen using TDA. An unbiased compound
network was constructed by simultaneously considering the

inhibition values across all the conditions for all the com-
pounds (Fig. 1D). By quantitatively color-scaling the individual
nodes (groups of compounds) in the network based on their
inhibition values, we identified two regions that displayed
selective inhibition of HT1080-XBP1-luc but not HT1080-
CMV-luc activity, thus highlighting a set of compounds that
specifically inhibit XBP1 splicing with minimal nonspecific
effects. Through more detailed analysis of the dose-inhibition
curves for individual compounds in these regions, we identified
four compounds with optimal curve fitting as well as magni-
tude of inhibition (Fig. 1D and E).

Interestingly, a previously identified IRE1a inhibitor
through the same chemical library screen, STF083010, was also
clustered in one of these regions, which served as an internal
positive control for the validity of the TDA approach (21, 23).
More significantly, the other compounds highlighted in these
clusters would not necessarily be singled out as promising
hits based upon conventional curve fitting–based selection
criteria. To confirm the luciferase reporter-based assay results,
we performed Western blotting to analyze the effect of these
compounds on endogenous XBP1 splicing in HT1080 cells
induced by Tg. Of the top four candidate compounds,
STF089106 displayed the most prominent inhibition on XBP1s
protein expression without affecting expression of unspliced
XBP1 (XBP1u; Fig. 1F, data not shown). Phospho-eIF2a
levels were not attenuated by STF089106 treatment, suggesting
that STF089106 specifically targeted the IRE1a–XBP1 branch
instead of inhibiting the UPR in general. On the basis of these
data, we selected STF089106 (1, N-acridine-9-yl-N',N'-
dimethylpropane-1,3-diamine, DAPA; refs. 40, 41) for further
analysis.

Acridines are DNA-binding agents and topoisomerase poisons
(42) that have been previously identified as antitumor and
antibacterial therapeutics (43). DAPA is an analogue of mAMSA,
an anilinoacridine with activity against leukemia (44), and the
acridine carboxamide (2, N-[2-(dimethylamino)ethyl]acridine-
4-carboxamide, DACA). DACA has been tested in phase II trials
against multiple types of cancers (45–48).

Validation of DAPA analogues as inhibitors of the
IRE1a–XBP1 pathway

Upon identification of DAPA as a potential screening hit, we
independently synthesized this molecule to confirm its activity
(designated Compound 5) and designed a small set of analo-
gues to explore the structure–activity relationships (SAR) of
this compound (Fig. 2). 9-Aminoacridines bearing basic
amine side chains have been characterized as DNA-affinic
cytotoxins (49) and we sought to determine whether the
SAR for inhibiting XBP1 splicing is mapped to that required
for DNA binding. DAPA contains a DNA intercalating 9-ami-
noacridine chromophore and we explored variations in the
chromophore with analogues (Compound 5, 6, 10, and 11).
Variations in side chain amine pKa (acid dissociation con-
stant) were explored with analogues Compound 5, 7, 8, and 9.
We further analyzed the role of the side chain using a series of
neutral analogues of varying lipophilicity with analogues
Compound 1 to 3 (Fig. 2A).

We then compared the effect of these analogues (5 to
30 mmol/L) on endogenous UPR marker proteins in HT1080
cells treated with Tg. All compounds containing the entire
acridine chromophore demonstrated inhibition of XBP1
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Figure 1.

Identification of small molecule inhibitors of the IRE1a–XBP1 pathway through HTS and TDA. A, top, schematic view of ER stress-induced IRE1a activation and
XBP1 mRNA splicing. Dashed lines show high-order assembly of IRE1a; bottom, schematic view of the luciferase reporter constructs used in the study. B,
flow chart of the HTS. C, heatmap showing percentage of inhibition values for the 990 compounds selected in the secondary screen across the eight doses on
both reporter cell lines. Red, positive percentage of inhibition. Blue, negative percentage of inhibition (higher levels of luciferase activity compared to vehicle
control). D, TDA analysis of the secondary screen data. The three graphs are based on an Iris rendering of a Reeb graph of the screening data. Individual nodes
represent compounds connected with edges based on the similarity in their percentage of inhibition profiles. Red, 50% and higher inhibition; blue color, 0%
inhibition. Left, Iris network of the compounds colored by percentage of inhibition values from HT1080-XBP1-luc cells treated with 10 mmol/L of individual
compounds. Middle, the same network colored by percentage of inhibition values from HT1080-CMV-luc cells treated with 10 mmol/L of individual compounds.
Right, compounds within the selected regions. White ellipses define regions with candidate compounds that inhibit XBP1-luciferase but have minimal inhibition of
CMV-luciferase. STF083010 is colored in pink. E, dose-inhibition curves of the four selected compounds from HT1080-XBP1-luc cells. F,Western blotting analysis
of HT1080 cells untreated and treated with 300 nmol/L Tg and varying doses of STF089106 for 14 hours. A panel of UPR marker proteins was analyzed. b-Actin
was used as a loading control.
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splicing, whereas saturation (Compound 11) or removal of one
ring (Compound 6) resulted in loss of inhibition, suggesting
that an acridine chromophore was important for inhibiting
XBP1s. In contrast, phospho-eIF2a levels remained relatively
unchanged, indicating that these compounds could preferen-
tially block IRE1a–XBP1 with minimal impact on the other
branches of UPR.

Next, we expanded our analysis of the more potent analogues
(Compound 1, 3 to 5, 7 to 10) at lower concentrations (0.5 to
3 mmol/L; Fig. 2B). Both 9-aminoacridine (Compound 5) and
acridine-4-carboxamide (Compound 4) displayed XBP1s
inhibitory activity with the 9-aminoacridine demonstrating the
greatest XBP1s inhibition at 1 mmol/L. Importantly, the 3,6-
dimethylamino substitution on the acridine ring increased
activity with Compound 10 showing XBP1s inhibition at as
low as 0.5 mmol/L. These SAR data indicate that the acridine
ring is critical for the activity of the drug to inhibit XBP1s.
Variation in the basicity of the amine side chain was tolerated,
although it appears that less basic amines, for example, Com-
pound 9, were weaker inhibitors. A range of neutral substitu-
ents were also tolerated, albeit with reduced potency compared
to Compound 5 (Fig. 2B). This targeted SAR dataset validated
the activity of DAPA as an inhibitor of XBP1 splicing and
confirmed the utility of 9-aminoacridines as the basis for future
drug development.

Mechanism of IRE1a–XBP1 inhibition by acridine derivatives
We explored the mechanism of inhibition of IRE1a–XBP1 by

analyzing a selection of representative analogues, including
Compound 10 (most potent), 5 (highly potent), 4 (limited
potency), and 11 (inactive). To test whether inhibition occurs
by directly disrupting the IRE1a–XBP1 interaction, we per-
formed an in vitro IRE1a RNase assay with recombinant human
IRE1a and 32P-labeled human XBP1 mRNA substrate (Fig. 3,
top). Although Compound 10 blocked in vitro XBP1 splicing
almost completely at 10 mmol/L and Compound 11 was
inactive as expected, Compounds 4 and 5 did not show activity
in this assay, even at concentrations up to 500 mmol/L. Fur-
thermore, we examined human BLOS1 cleavage as an assay for
RIDD. We determined that Compound 10 inhibited RIDD with
similar efficacy as XBP1 splicing (Fig. 3, bottom), suggesting
that 3,6-dimethylamino substitution of the acridine ring is
critical for global inhibition of IRE1a endonuclease activity.
However, as both Compounds 4 and 5 displayed inhibitory
activity against XBP1s in the cell-based assay, there could be an
alternative mechanism by which these compounds interfere
with IRE1a activity in intact cells that is not evident in the cell-
free system.

Next, we determined the effect of these compounds on
IRE1a dimerization and oligomerization, necessary for acti-
vation of its RNase activity. Initially, we performed an in vitro

Figure 2.

Validation of acridine derivatives as inhibitors of the IRE1a–XBP1 pathway. A, Western blot analysis of a panel of UPR marker proteins in HT1080 cells
untreated and treated with 300 nmol/L Tg plus 0 to 30 mmol/L of 11 acridine derivatives. b-Actin was used as a loading control. Chemical structures of the
compounds are displayed on top of the blots. B, the same Western blot analysis with lower concentrations (0 to 3 mmol/L) for 8 of the 11 acridine
derivatives that showed profound inhibition of XBP1s in A.
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IRE1a oligomerization assay, in which addition of ADP to
purified IRE1a stimulates its oligomerization (Fig. 4A; ref. 36).
Although treatment with each compound alone did not affect
the optical readings, Compounds 4, 5, and 10 significantly
attenuated ADP-induced IRE1a oligomerization. Interestingly,
STF083010 did not show any activity in this assay, highlight-
ing the unique mechanistic specificity of the acridine analo-
gues on IRE1a oligomerization. The lack of inhibitory activity
for Compound 11 demonstrates that an acridine ring is essen-
tial for inhibiting IRE1a activity by disrupting its oligomeri-
zation. In summary, the basic acridine ring in addition to
an aminoalkyl side chain at the 4- or 9-position was sufficient
for disrupting IRE1a oligomerization, but not adequate for
inhibiting the established RNase activity. In contrast, the
3,6-dimethylamino substitution enabled both disruption
of IRE1a oligomerization and inhibition of XBP1 splicing
activity.

To verify the results from the in vitro oligomerization assay in
intact cells, we utilized HEK293 cells overexpressing GFP-tagged
IRE1a in which IRE1a-GFP foci formation can be detected
through fluorescence imaging after Tg treatment (Fig. 4B; ref. 37).
We used immunofluorescence staining to detect IRE1a-GFP foci
as higher concentrations of Compound 10 caused autofluores-
cence (Fig. 4C). We found that higher than 1 mmol/L of Com-
pound 10 completely inhibited Tg-induced foci formation in
living cells. These data are consistent with the in vitro oligomer-
ization assay results and indicate that Compound 10 blocks XBP1
splicing by both inhibiting IRE1a RNase activity directly and
disrupting IRE1a oligomerization.

9-Aminoacridine analogues display cytotoxicity against
multiple myeloma cell lines in vitro

We performed XTT viability assays on both RPMI 8226 and
MM1.R (dexamethasone-resistant) human multiple myelo-
ma cells treated with selected analogues to characterize drug
cytotoxicity. Consistent with their high potency in inhibiting
XBP1s, Compounds 5 and 10 displayed significant cyto-
toxicity in these cells within the concentration range (0 to
6 mmol/L; Fig. 5A) and the weaker Compound 4 demon-
strated only limited cytotoxicity (Fig. 5A). As a negative
control, Compound 11, which was inactive in blocking XBP1s,
failed to show any cytotoxicity on the multiple myeloma
cells (Fig. 5A).

We also assessed the effect of these compounds on a panel of
UPR marker proteins in multiple myeloma cells treated between
1 and 3 mmol/L and found a consistent correlation between the
cytotoxicity of these compounds with the degree of inhibition of
XBP1s (Fig. 5B). In summary, these findings demonstrate that
9-aminoacridines, particularly Compound 10, display cytotoxic-
ity in multiple myeloma cells in vitro, which correlates with
inhibition of the IRE1a–XBP1 pathway.

Potent inhibition of XBP1 splicing by 3,6-DMAD in vivo
On the basis of the cell-based and cell-free assay results, we

chose to evaluate the activity of 3,6-DMAD (Compound 10)
in vivo. We utilized transgenic mice constitutively expressing
the XBP1-luciferase reporter, which expresses luciferase activ-
ity under basal and inducible ER stress in vivo (39). After three
intraperitoneal administrations of 3,6-DMAD at a dose of

Figure 3.

In vitro IRE1a ribonuclease assay on a
selection of acridine derivatives. Top,
splicing of radiolabeled full-length
human XBP1 mRNA by recombinant
hIRE1a (far left) and the effects of
increasing doses of the four acridine
derivatives on the splicing. Bottom,
splicing of radiolabeled full-length
human BLOS1 mRNA by recombinant
hIRE1a (far left) and the effects of
increasing doses of the four acridine
derivatives on the splicing.
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Figure 4.

In vitro IRE1a oligomerization and in vivo IRE1a-GFP foci formation assay. A, left, increasing concentration of recombinant IRE1a was used to perform in vitro
oligomerization assays with or without 2 mmol/L ADP. Addition of ADP resulted in increased optical density (OD) at higher concentrations of IRE1a, indicating
protein oligomerization. Middle, IRE1a without ADP or each acridine derivative alone do not significantly change optical density readings. STF083010
was used as a control. Right, reactions were performed with IRE1a plus ADP and 60 mmol/L of inhibitor. B, immunofluorescent imaging of HEK293
cells overexpressing an IRE1a-GFP fusion protein untreated and treated with 300 nmol/L Tg for 2 hours. IRE1a-GFP foci were detected both through
GFP channel and immunofluorescently. DAPI staining was used to visualize nuclei. GFP/anti-GFP/DAPI channels are combined in the composite view on the
right. C, the same immunofluorescent imaging as in B with 1 to 60 mmol/L of Compound 10 for 2 hours.
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10 mg/kg every 12 hours, this compound significantly inhibited
in vivo luciferase activity assessed 3.5 days after the initial
treatment (Fig. 6A), whereas treatment with vehicle did not
cause any significant change (Fig. 6B).

3,6-DMAD suppresses multiple myeloma xenograft growth
in vivo

To assess the effect of 3,6-DMAD on multiple myeloma tumor
growth in vivo, we treated NOD SCID mice transplanted with
RPMI 8226 cells subcutaneously with 10 mg/kg of 3,6-DMAD
administered intraperitoneally every 48 hours. Compared with

vehicle group, 3,6-DMAD-treatment significantly inhibited tumor
xenograft growth (Fig. 6C and D).

Discussion
We previously performed a luciferase reporter–based HTS

targeting the IRE1a–XBP1 pathway of the UPR. Using TDA
on the HTS dataset, we identified DAPA as a potent inhibitor
of XBP1 splicing. We synthesized a set of DAPA analogues
to explore the SAR and conclude that the acridine chromo-
phore is critical for inhibition of XBP1 splicing. Furthermore, a

Figure 5.

Cytotoxicity of acridine derivatives on
human MM cell lines. A, XTT cell viability
assay of RPMI 8226 and MM1.R human
MM cells treated with 0 to 6 mmol/L of
Compound 4, 5, 10, and 11 for 24 hours.
Background-subtracted optical
absorbance values normalized to
vehicle treatment (set to 100%) � SD
were plotted over the indicated
compound doses. B, Western blot
analysis of a panel of UPR marker
proteins for both types of cells that were
treated with 0 to 3 mmol/L Compound
4, 5, 10 and Compound 11 for 14 hours.
b-Actin was used as a loading control.
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3,6-dimethylamino substitution on the chromophore, 3,6-
DMAD, showed the most potent and comprehensive IRE1a
inhibitory activity in all cell-based and cell-free assays. These
compounds also revealed a novel MOA through its disruption
of IRE1a oligomerization. Finally, 3,6-DMAD demonstrated
significant cytotoxicity against multiple myeloma cell lines,
blocked XBP1 splicing in XBP1-luc transgenic reporter mice,
and inhibited multiple myeloma tumor xenograft growth.

The complexity of the data obtained from HTS results in large
signals dominating the analysis whereas subtle andpossiblymore
potent hits may remain undetected. In this study, we have shown
that topological methods may be superior in detecting subtle but
real signals from HTS data (29, 30, 33). Based upon a conven-

tional analysis inwhich compounds are ranked by%inhibition of
XBP1-luciferase signal, the acridine compounds were not obvious
candidate for further investigation (21). The methodology from
this study utilizes a network-based organization of the data so that
the relatedness of promising lead compounds to other com-
pounds in the chemical library is readily available and this
information can be used for rapidly developing SAR data, result-
ing in a more efficient drug discovery process.

Our group first reported the feasibility of targeting IRE1awith
a small molecule inhibitor, STF-083010 (21). This compound
inhibited in vitro RNase activity of IRE1a, displayed cytotoxicity
against multiple myeloma cell lines, and delayed RPMI 8226
xenograft growth. The mechanism of inhibition of STF083010

Figure 6.

In vivo inhibition of XBP1 splicing and multiple myeloma xenograft growth by 3,6-DMAD. Bioluminescent images of mice expressing an XBP1-luciferase
reporter gene treated with 3,6-DMAD (A) and vehicle (20% ethanol in saline; (B) after 84 hours. Treatment schedules and average luciferase activities
normalized to 0 hour � SD with the corresponding P values from Student t test are shown on the right. C, NOD SCID mice with subcutaneously
implanted RPMI 8226 tumors were treated with 10 mg/kg 3,6-DMAD every 2 days or vehicle (saline). Tumor volumes were measured and plotted over
time. D, upon euthanization of the tumor-bearing mice, tumors were dissected and tumor weights were measured and average weights � SD were plotted.
The P value from Student t test is shown on top.
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was further elucidated by a later study (23), showing that both
STF-083010 and 4m8C, a novel IRE1a RNase inhibitor, binds
to K907 in the RNase domain of hIRE1a. Another XBP1s inhib-
itor, MKC-3946, delayed RPMI 8226 xenograft growth follow-
ing a 100 mg/kg daily dose (17). Its MOA may be similar to
STF083010 and 4m8C, as MKC-3946 has the same HAA motif
common to the released forms of STF083010 and 4m8C (26).
In addition, toyocamycin, an adenosine analogue, inhibits
XBP1s and significantly suppressed RPMI 8226 xenograft
growth with unknown MOA (24).

The mechanism of IRE1a activation during ER stress was
extensively characterized. Accumulation of unfolded and mis-
folded proteins in the ER stimulates IRE1a trans-autophosphor-
ylation and dimerization of its kinase and RNase domain to form
the active catalytic site (3). Further analysis revealed that upon
activation, IRE1a assembles into high-order oligomers, which is
essential to its function (4, 37). This process was successfully
visualized by detecting GFP-tagged IRE1a foci formation through
live cell imaging (37). Our in vitro and cell-based assays revealed
that a set of acridine derivatives block XBP1 splicing with variable
potency through interfering with IRE1a oligomerization as a
novel MOA. 3,6-DMAD, the most potent of this class of drugs,
inhibited both oligomerization and in vitro RNase activity of
IRE1a, suggesting that substitution of the acridine chromophore
induces additional activity targeting the RNase activity. Further
SAR analysis to clarify the critical structural features of this
chemical prototype for inhibitingXBP1 splicingwill be the subject
of future studies.

In conclusion, by utilizing TDA analysis onHTS, we identified a
class of acridine derivatives as potent and specific inhibitors of the
IRE1a–XBP1 branch of UPR with prominent cytotoxicity on
multiplemyeloma cells as well as in vivomultiplemyeloma tumor
growth. Therefore, our findings have defined a class of com-

pounds with a novel MOA and provide a strong preclinical
rationale for further development of this class of compounds as
a therapeutic strategy for multiple myeloma patients.
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